Electron Ionization Mass Spectrometric Studies of Some 3-Substituted Isocoumarins and Related Compounds

MUHAMMAD T. HUSSAIN, M. HUSSAIN AND NASIM H. RAMA Department of Chemistry, Quaid-I-Azam University, Islamabad-45320, Pakistan

(Received 14th March, 2001, revised 29th May, 2001)

Summary: Fragmentation pattern in mass spectra of some isocoumarins (1a-c), dihydro-isocoumarins (2a-c) and related compounds (3-4a-c) are described with the help of EIMS. The molecular formulae are further confirmed by HREIMS peak matching of molecular ion peaks exhibited in EIMS.

Introduction:

We have recently reported [1] the synthesis of some 3-substituted isocoumarin (1a-c), 3-substituted-3,4-dihydroisocoumarins (2a-c) and their intervening intermediates (3-4a-c). These compounds were prepared to synthesize models for hydrangenol [2] (5), hydrangenol-8-β-D-glucoside [2] (6), phyllodulcin [2] (7) and macrophylloside A [3,4] (8). Here in we wish to report electron ionization mass spectrometric (EIMS) studies of these compounds which will serve as a reference library for these class of compounds.

Molecular formulae of various compounds have been confirmed by high resolution electron ionization mass spectrometry (HREIMS) as illustrated in Table-1.

Results and Discussion

The general fragmentation pattern of these compounds are derived with the help of low resolution electron ionization mass spectra (LREIMS) as depicted in Schemes 1-4.

3-(4'-Methoxyphenyl)isocoumarin (1a), 3-(3',4'-Dimethoxyphenyl)isocoumarin (1b) and 3-(3',4',5'-Trimethoxyphenyl)isocoumarin (1c)

The EIMS of (1a-c) afforded molecular ions at m/z 252 ($C_{16}H_{12}O_3$, 1a), 282 ($C_{17}H_{14}O_4$, 1b) and 312 ($C_{18}H_{16}O_5$, 1c). Loss of a conjugated ketene radical from the respective molecular ions yielded the ions at m/z 135 ($C_8H_7O_2$, 1ad), 165 ($C_9H_9O_3$, 1bd) and 195 ($C_{10}H_{11}O_4$, 1cd), followed by a further loss of a CO molecule to afford ion peaks at m/z 107 (C_7H_7O , 1af), 137 ($C_8H_9O_2$, 1bf) and 167 ($C_9H_{11}O_3$,

1cf). These ion peaks also originated directly by the loss of isocoumarin radical from the corresponding M+ peaks (link scane measurements). Loss of

Table 1: HREIMS of Molecular Ion Peaks of Compounds (1-4a-c)

Compound	Mol. Formulae	M ⁺ (m/z)	
		Calculated	Found
1a	C16H12O1	252.0786	252.0795
1b	C17H14O4	282.0892	282.0902
1c	C18H16O5	312.0998	312.0990
2a	C ₁₆ H ₁₄ O ₃	254.0943	254.0955
2 b	C17H16O4	284.1049	284.1031
2c	C18H18O5	314.1154	314.1165
3a	C16H14O4	270.0892	270.0885
3b	C17H16O5	300.0998	300.0502
3c	C18H18O6	330.1103	330.1095
49	C17H16O4	284.1049	284.1071
4b	C18H18O5	314.1154	314.1165
4c	C ₁₉ H ₂₀ O ₆	344,1260	344.1275

substituted phenyl radicals from the molecular ions provided isocoumarin ion peaks at m/z 145 ($C_9H_5O_2$, 1ac-bc), followed by the loss of CO molecule to afford the peaks at m/z 117 (C_8H_5O , 1ae-ce). Removal of CO molecule from the molecular ion provided radical cations at m/z 224 ($C_{15}H_{12}O_2$, 1aa), 254 ($C_{16}H_{14}O_3$, 1ba) and 284 ($C_{17}H_{16}O_4$, 1ca) followed by the loss of methoxy radical to afford ion peaks at 193 ($C_{16}H_{12}O_3$, 1ab), 223 ($C_{16}H_{12}O_3$, 1bb) and 253 ($C_{16}H_{13}O_3$, 1cb) as shown in Scheme-1.

3-(4'-Methoxyphenyl)-3,4-dihydroisocoumarin (2a), 3-(3',4'-Dimethoxyphenyl)-3,4-dihydroisocoumarin (2b) and 3-(3',4',5'-Trimethoxyphenyl)-3,4-dihydroisocoumarin (2c)

EIMS of (2a-c) afforded the molecular ions at m/z 254 ($C_{16}H_{14}O_3$, 2a), 284 ($C_{17}H_{16}O_4$, 2b) and 314 ($C_{18}H_{18}O_5$, 2c). Further fragmentation pattern is shown in Scheme-2.

Scheme-2

Scheme-3

3-(4'-Methoxybenzoylmethyl)benzoic acid (3a), 3-(3',4'-Dimethoxybenzoylmethyl)benzoic acid (3b) and 3-(3',4',5'-Trimethoxybenzoylmethyl)benzoic (3c)

Molecular ions at m/z 270 (C₁₆H₁₄O₄, 3a), 300 $(C_{17}H_{16}O_5, 3b)$ and 330 $(C_{18}H_{18}O_6, 3c)$ were obtained in the EIMS of (3a-c). Further fragmentation pattern is shown in Scheme-3.

Methyl 3-(4'-Methoxybenzoylmethyl)benzoate (4a), 3-(3',4'-dimethoxybenzoylmethyl)benzoate (4b) and Methyl 3-(3',4',5'-trimethoxybenzoylmethyl) benzoate (4c)

Molecular ions at m/z 270 ($C_{16}H_{14}O_4$, 4a), 300 $(C_{17}H_{16}O_5, 4b)$ and 330 $(C_{18}H_{18}O_6, 4c)$ were obtained in the EIMS of (4a-c). Further fragmentation pattern is shown in Scheme-4.

Scheme-4

Experimental

(1-4a-c) were prepared Compounds according to the literature [5] procedure. All of these were characterized by IR, mass, 13C- and 1H-NMR spectral data and elemental analysis. The EIMS were recorded on MAT-311 instrument with an accelerating voltage of 3 kV and ionization energy of 70 eV. The temperature of the ion source was maintained at 250°C.

References

1. M. T. Hussain and N. H. Rama, J. Nat. Prod.

- (2001) (submitted).
- 2. (a) H. T. Kaneko, T. Fujimori, H. Matsushita and M. Nogcuhi; Nippon Nogei Kagaku Zasshi, 47, 605; Chem. Abstr. 80, 93153 (1974). (b) H. Suzuki, T. Ikeda, T. Matsumoto and M.
 - Noguchi; Agric. Biol. Chem., 41, 1815 (1977).
- 3. T. Hashimoto, M. Tori and Y. Asakawa; Phytochemistry, 26, 3323 (1987).
- 4. C. S. Hudsen and J. K. Dale; J. Am. Chem. Soc., **87**, 1264 (1915).
- 5. M. T. Hussain and N. H. Rama; Indian J. Heterocyclic Chem., 8, 99-102 (1998).